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A Comparison of Known Classes of Reliable Multicast Protocols

Brian Neil Levine

ABSTRACT

This thesis addresses the question of whether a reliable multicast protocol can be
designed that enjoys all the scaling properties of receiver-initiated protocols, while still
being able to operate correctly with finite memory. To answer this question, we analyze the
maximum throughput of the known classes of reliable multicast protocols that have been
proposed to solve the acknowledgment (Ack) implosion problem of sender-initiated reliable
multicast protocols. We introduce a new taxonomy of reliable multicast protocols, based
on the premise that the mechanisms used to release data at the source after correct delivery
should be decoupled from the mechanisms used to pace the transmission of data and to
effect error recovery. Receiver-initiated protocols, which are based entirely on negative
acknowledgments (NAKs) sent from the receivers to the sender, are shown to require infinite
buffers in order to prevent deadlocks. Two other solutions to the AcK-implosion problem are
tree-based protocols and ring-based protocols. The first organize the receivers in a tree and
send ACKs along the tree; the latter send ACKs to the sender along a ring of receivers. These
two classes of protocols are shown to operate correctly with finite buffers. We show that
the tree-based protocols constitute the most scalable class of all reliable multicast protocols

proposed to date.
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1. Introduction

The increasing popularity of real-time applications supporting either group collaboration
or the reliable dissemination of multimedia information over the Internet is making the
provision of reliable and unreliable end-to-end multicast services an integral part of its
architecture. Although reliable broadcast protocols have existed for quite some time (e.g.,
see [1]), viable approaches on the provision of reliable multicasting over the Internet are just
emerging. The reliable multicast problem facing the future Internet is compounded by its
current size and continuing growth, which makes the handling of acknowledgments a major
challenge commonly referred to as the acknowledgment (ACK) implosion problem.

The two most popular approaches to reliable multicasting proposed to date are called
sender-initiated and receiver-initiated. In the sender-initiated approach, the sender main-
tains the state of all the receivers to whom it has to send information and from whom it has
to receive ACKs. Each sender’s transmission or retransmission is multicast to all receivers;
for each packet that each receiver obtains correctly, it sends a unicast ACK to the sender.
In contrast, in the receiver-initiated approach, each receiver informs the sender of the in-
formation that is in error or missing; the sender multicasts all packets, giving priority to
retransmissions, and a receiver sends a negative acknowledgment (NAK) when it detects an
error or a lost packet.

The first comparative analysis of sender-initiated and receiver-initiated reliable multicast
protocols was presented by Pingali et al. [2, 3]. This analysis showed that receiver-initiated
protocols are far more scalable than sender-initiated protocols, because the maximum
throughput of sender-initiated protocols is dependent on the number of receivers, while
the maximum throughput of receiver-initiated protocols is independent of the number
of receivers (when the probability of packet loss is negligible). However, as this thesis
demonstrates, the receiver-initiated protocols proposed to date cannot prevent deadlocks
when they operate with finite memory.

This thesis addresses the question of whether a reliable multicast protocol can be



designed that enjoys all the scaling properties of receiver-initiated protocols, while still
being able to operate correctly with finite memory. To address this question, the previous
analysis [2, 3] is extended to consider the maximum throughput of generic ring-based
protocols, and two classes of tree-based protocols. These classes are the other three known
approaches that can be used to solve the Ack-implosion problem. Our analysis shows
that tree- and ring-based protocols can work correctly with finite memory, that both are
scalable, and that tree-based protocols are the best choice in terms of processing and memory
requirements.

The results presented in this thesis are theoretical in nature and apply to generic
protocols, rather than to specific implementations; however, we believe that they provide
valuable architectural insight for the design of future reliable multicast protocols. Chapter 2
presents a new taxonomy of reliable multicast protocols that organizes known approaches
into four protocol classes and discusses how many key papers in the literature fit within
this taxonomy. This taxonomy is based on the premise that the analysis of the mechanisms
used to release data from memory after their correct reception by all receivers can be
decoupled from the study of the mechanisms used to pace the transmission of data within
the session and the detection of transmission errors. Using this taxonomy, we argue that
all reliable unicast and multicast protocols proposed to date that use NaKs and work
correctly with finite memory use ACKs to release memory and NAKs to improve throughput.
Chapter 3 addresses the correctness of the various classes of reliable multicast protocols
introduced in our taxonomy, showing that the type of receiver-initiated protocols proposed
to date require infinite memory. Chapter 4 extends the analysis by Pingali et al. [2, 3] by
analyzing the maximum throughput of three protocol classes: tree-based, tree-based with
local NAK-avoidance and periodic polling (tree-NAPP), and ring-based protocols. Although
the maximum throughput of receiver-initiated, tree-based', and ring-based protocols are

all independent of the number of receivers as the probability of error goes to zero, we

'To avoid confusion comments on “receiver-initiated” and “tree-based” protocols are inclusive of all

respective subclasses.



show that only tree-based protocols can be completely scalable under any condition, i.e.,
when the probability of error is non-negligible. Chapter 5 provides numerical results on the
performance of the protocol classes under different scenarios, and discusses the implications
of our results in light of recent work on reliable multicasting. Chapter 6 provides concluding

remarks.



2. Background

2.1 A New Taxonomy of Reliable Multicast Protocols

We now describe the four generic approaches known to date for reliable multicasting.
Well-known protocols (for unicast and multicast purposes) are mapped into each class. Our
taxonomy differs from prior work [3, 2, 4] addressing receiver-initiated strategies for reliable
multicasting in that we decouple the definition of the mechanisms needed for pacing of data
transmission from the mechanisms needed for the allocation of memory at the source. Using
this approach, the protocol can be thought as using two windows: a congestion window (cw)
that advances based on feedback from receivers regarding the pacing of transmissions and
detection of errors, and a memory allocation window (mw) that advances based on feedback
from receivers as to whether the sender can erase data from memory. In practice, protocols
may use a single window for pacing and memory (e.g., TCP [5]) or separate windows
(e.g., NETBLT [6]). It will become apparent that this decoupling is critical in obtaining
an accurate understanding of why reliable unicasting and multicasting protocols scale and
work correctly with finite memory.

Each reliable protocol assumes the existence of multicast routing tree(s) that are pro-
vided by underlying multicast routing protocols. In the internet, these trees will be built
using such protocols as DVMRP [7], Core Based Trees (CBT) [8] or Protocol Independent
Multicast (PIM) [9].

2.2 Sender-Initiated Protocols

In the past [2], sender-initiated protocols have been characterized as placing the respon-
sibility of reliable delivery at the sender. However, this characterization is overly restrictive
and does not reflect the way in which several reliable multicast protocols that rely on posi-
tive acknowledgments from the receivers to the source have been designed. In our taxonomy,

a sender-initiated reliable multicast protocol is one that requires the source to receive ACKs



from all the receivers, before it is allowed to release memory for the data associated with
the AcKs. It is clear that the source is required to know the constituency of the receiver
set, and that the scheme suffers from the Ack-implosion problem. However, this charac-
terization leaves unspecified the mechanism used for pacing of transmissions and for the
detection of transmission errors. Either the source or the receivers can be in charge of the
retransmission timeouts!

The traditional approach to pacing and transmission error detection (e.g., TCP in the
context of reliable unicasting) is for the source to be in charge of the retransmission timeout.
However, as suggested by the results reported by Floyd et al. [4], a better approach for pacing
a multicast session is for each receiver to set its own timeout. A receiver sends ACKs to
the source at a rate that it can accept, and sends a NAK to the source after not receiving
a correct packet from the source for an amount of time that exceeds its retransmission
timeout. An ACK can refer to a specific packet or a window of packets, depending on the
specific retransmission strategy.

Notice that, regardless of whether a sender-based or receiver-based retransmission strat-
egy is used, the source is still in charge of deallocating memory after receiving all the ACKs
for a given packet or set of packets. The source keeps packets in memory until every receiver
node has positively acknowledged receipt of the data. If a sender-based retransmission strat-
egy is used, the sender “polls” the receivers for ACKs by retransmitting after a timeout. If
a receiver-based retransmission strategy is used, the receivers “poll” the source (with an
ACK) after they time out!.

It is important to note that, just because a reliable multicast protocol uses NAKs, it
does not mean that it is receiver-initiated, i.e., that NAKs are the basis for the source to
ascertain when it can release data from memory. The combination of ACKs and NAKs has
been used extensively in the past for reliable unicast and multicast protocols. For example,
NETBLT is a unicast protocol that uses a NAK scheme for retransmission, but only on small

partitions of the data (i.e., its cw). In between the partitions, called “buffers” are Acks

YOf course, the source still needs a timer to ascertain when its connection with a receiver has failed.



for all the data in the buffer (i.e., the mw). Only upon receipt of this ACK does the source
release data from memory; therefore, NETBLT is really sender-initiated. In fact, NAKs
are unnecessary in NETBLT for its correctness, i.e., a buffer can be considered one large
packet that eventually must be AcKed, and are important only as a mechanism to improve
throughput by allowing the source to know sooner when it should retransmit some data.

A protocol similar to NETBLT is the “Negative Acknowledgments with Periodic Polling”
(NAPP) protocol [10]. This protocol is a broadcast protocol for LANs. Like NETBLT,
NAPP groups together large partitions of the data that are periodically Acked, while lost
packets within the partition are NAKed. NAPP advances the cw by NAKs and periodically
advances the mw by ACKs. Because the use of NAKs can cause a NAK-implosion at the
source, NAPP uses a NAK-avoidance scheme. As in NETBLT, NAKs increase NAPP’s
throughput, but are not necessary for its correct operation, albeit slow. The use of periodic
polling limits NAPP to LANs, because the source can still suffer from an AcK-implosion
problem even if ACKs occur less often.

Other sender-initiated protocols, like the Xpress Transfer Protocol (XTP) [11], were
created for use on an internet, but still suffer from the Ack-implosion problem.

The main limitation of sender-initiated protocols is not that AcCKs are used, but the
need for the source to process all of the ACKs and to know the receiver set. The two known
methods that address this limitation are: (a) using NAKs instead of ACKs, and (b) delegating
retransmission responsibility to members of the receiver set by organizing the receivers into

a ring or a tree. We discuss both approaches subsequently.

2.3 Receiver-Initiated Protocols

Previous work [2] characterizes receiver-initiated protocols as placing the responsibility
for ensuring reliable packet delivery at each receiver. The critical aspect of these protocols
for our taxonomy is that no ACKs are used. The receivers send NAKs back to the source
when a retransmission is needed, detected by either an error, a skip in the sequence numbers

used, or a timeout. Because the source receives feedback from receivers only when packets



are lost and not when they are delivered, the source is unable to ascertain when it can safely
release data from memory. There is no explicit mechanism in a receiver-initiated protocol
for the source to release data from memory (i.e., advance the mw), even though its pacing

and retransmission mechanisms are scalable and efficient (i.e., advancing the cw).

2.3.1 Receiver-Initiated Protocols with NAK-avoidance

Because receivers communicate NAKs back to the source, receiver-initiated protocols have
the possibility of experiencing a NAK-implosion problem at the source if many receivers
detect transmission errors. To remedy this problem, previous work on receiver-initiated
protocols [2, 4] adopts the NAK-avoidance scheme first proposed for NAPP, which is a
sender-initiated protocol. Receiver-initiated with Nak-avoidance (RINA) protocols have
been shown [2] to have improved the performance over the basic receiver-initiated protocol.
The resulting generic RINA protocol is as follows [2]: The sender multicasts all packets and
state information, giving priority to retransmissions. Whenever a receiver detects a packet
loss, it waits for a random time period and then multicasts a NAK to the sender and all
other receivers. When a receiver obtains a NAK for a packet that it has not received and
for which it has started a timer to send a NAK, the receiver sets a timer and behaves as if
it had sent a NAK. The expiration of a timer without the reception of the corresponding
packet is the signal used to detect a lost packet. With this scheme, it is hoped that only
one NAK is sent back to the source for a lost transmission for an entire receiver set. Nodes
farther away from the source might not even get a chance to request a retransmission. The
generic protocol does not describe how timers are set accurately; in this thesis, we assume
perfect setting of timers because we are interested in the maximum attainable throughput
of protocols.

The generic RINA protocol we have just described constitutes the basis for the operation
of the scalable reliable multicasting (SRM) algorithm [4]. SRM has been successfully
embedded into a internet collaborative whiteboard application called wb. SRM sets timers

based on low-rate, periodic, “session-messages” multicast by every receiver. The messages



specify the highest sequence number accepted from the source? and a time-stamp used by
the receivers to estimate the delay from the source. The average bandwidth consumed by
session messages is kept small (e.g., by keeping the frequency of session messages low).
SRM’s implementation requires that every node stores all packets (a scheme could be used
to support a “distributed memory”) or that the application layer store all relevant data.
However, it is clear that the sequence number in a session message is an ACK to the last
packet from the source, and that a receiver can keep “polling” the source periodically to
ensure that the source eventually delivers missing packets not caught by the NAK scheme.
Here again, NAKs are used to advance the cw, which is controlled by the receivers and
session messages would be used to advance the mw. We do not place SRM within our
sender-initiated category, because in theory the source should not know its receiver set.
In practice, the persistence of session messages forces the source to know the receiver set
over time. Unfortunately, as defined, SRM defeats one of the goals of the receiver-initiated
paradigm, i.e., to keep the receiver set anonymous from the source for scaling purposes.

There are other issues that limit the use of defined RINA protocols such as SRM for
reliable multicasting. First, SRM requires that data needed for retransmission be rebuilt
from the application. SRM’s approach is reasonable only for applications in which the
immediate state of the data is exclusively desired, which is the case of a distributed
whiteboard. However, the approach does not apply for multimedia applications that have
no current state, but only a stream of transition states (e.g., a video channel).

Second, NAKs and retransmissions must be multicast to the entire multicast group to
allow suppression of NaAKs. The NAK-avoidance was designed for a limited scope, such as a
LAN, or the small number of Internet nodes (as it is used in tree-NAPP protocols). This
is because the basic NAK-avoidance algorithm requires that timers be set based on updates
multicast by every node. As the number of nodes increases, each node must do increasing
amount of work! Even worse, nodes that are on congested links, LANs or regions may

constantly bother the rest of the multicast group by multicasting NAKs (often referred to

2Multiple sources are supported in SRM, we focus on the single source.



as the “crying baby” problem).

Another example of a receiver-initiated protocol is the “log-based receiver-reliable multi-
cast” (LBRM) [12], which uses a hierarchy of log servers that store information indefinitely
and receivers recover by contacting a log server. Using log servers is feasible only for ap-
plications that can afford the servers and leaves many issues unresolved. If a single server
is used, performance can degrade due to the load at the server; if multiple servers are
used, mechanisms must still be implemented to ensure that such servers have consistent
information.

The ideal receiver-initiated protocols have three main advantages over sender-initiated
protocols, namely: (a) the source does not know the receiver set, (b) the source does not
have to process every ACK from each receiver, and (c) the receivers pace the source. The
limitation of these protocols is that they have no mechanism for the source to know when
it can safely release data from memory. As we have argued, known implementations of
the receiver-initiated approach force nodes to know the receiver set, even if by means of
bandwidth-efficient methods, or require unbounded storage at a receiver.

The following two classes organize the receiver set in ways that permit the strengths of
receiver-initiated protocols to be applied on a local scale, while providing explicit mecha-

nisms for the source to release memory safely (i.e., efficient management of the mw).

2.4 Tree-Based Protocols

Tree-based protocols are characterized by dividing the receiver set into groups, distribut-
ing retransmission responsibility over a acknowledgment tree (ACK tree) structure. Without
loss of generality, our generic protocol definition assumes that each group consists of no more
than B children and a group leader. Children are likely to be the group leaders of a sub-
group. Acknowledgments from children in a group, including the sources own group, are
sent only to the leader. A child in a group sends its acknowledgment to its parent as soon as
it receives a correct packet, not when all its own children (if any) have sent their acknowl-

edgments. Clearly, these acknowledgments differ from ACKs or NAKs used in sender- and



10

receiver-initiated protocols and we refer to them as hierarchical acknowledgments (HACKs).
The use of HACKs is important for throughput. Notice that, if the source had to wait for
ACKs to be aggregated all the way from the leaf nodes, it would have to be paced based on
the slowest tree path.

Tree-based protocols delegate to leaders of subtrees the decision of when to delete packets
from memory, which is conditional upon receipt of HACKs from the children in the group.
HAcKs are sent up a B-ary in-tree composed of up to three types of nodes: a source node,
leaf nodes, and hop nodes. The source node is the originator of a new packet, which it
multicasts to all the receivers, and has at most B children from which to process HACKs
and to send retransmissions. Leaf nodes are at the bottom of the tree and are not responsible
for any children. They play the same role as receivers in the sender-initiated protocol, except
that they send their HACKs only to their group leaders (hop nodes) instead of sending ACKs
to the source node. Hop nodes are group leaders in between the source and leaf nodes. They
send HACKs to their own group leaders one step higher in the tree, and they collect HACKs
from the children in their group, retransmitting if necessary. They do not release data
from memory until all children have acknowledged correct transmission. Obviously a tree
consisting of the source as the only leader and leaf nodes corresponds to the sender-initiated
scheme.

To simplify our analysis, we assume that the source and group leaders control the
retransmission timeouts; however, such timeouts can be controlled by the children of the
source and group leaders. Accordingly, when the source sends a packet, it sets a timer, and
each hop node sets a timer as it becomes aware of a new packet. If there is a timeout before
all HACKs have been received, the packet is assumed to be lost and is retransmitted by the
source or group leader to its children. We assume a selective repeat strategy is used, so
that once a packet is received correctly, it is never rebroadcast to the group again. Because
out analysis focuses on maximum attainable throughput of protocol classes, we will assume
that ACK tree perfectly mirrors the routing tree created by the underlying routing protocol.

The first application of tree-based protocols to reliable multicasting over the internet was
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reported by Paul et al. [13], who compare three basic schemes for reliable point-to-multipoint
multicasting using hierarchical structures. Their results have been fully developed as the
reliable multicast transport protocol (RMTP) [14]. While our generic protocol sends a
HACK for every packet sent by the source, RMTP sends HACKs only periodically, so as not
to conserve bandwidth. RMTP has been implemented on several platforms and has been
used successfully in AT&T’s call detail data distribution network [15].

Tree-based protocols eliminate the ACK implosion problem and free the source from
having to know the receiver set, work with finite memory, provide maximum end-to-end
delays that are bounded, and operate solely on messages exchanged in local groups (between
a node and its children in the AcCK tree). As we show in Chapter 4, the amount of work
required at each node for tree-based protocols does not increase with the number of group
members, i.e., the throughput of such protocols is not dependent on the number of group
members.

We define a tree-NAPP protocol as a tree-based protocol that uses NaAK-avoidance and
periodic polling [10] in the local groups. NAKs alone are not sufficient to guarantee reliability
with finite memory, so receivers send a periodic positive (hierarchical) acknowledgment to
their parents to advance the cw. Note that messages sent for the setting of timers needed for
NAK-avoidance are limited to the local group, which is scalable. The tree-based multicast

transport protocol (TMTP) [16] is the only specification of a tree-NAPP protocol to date.

2.5 Ring-Based Protocols

Token-ring based protocols for reliable multicast were originally developed to provide
support for applications that require an atomic and total ordering of transmissions at all
receivers. One of the first proposals for reliable multicasting is the token ring protocol
(TRP) [1]; its aim was to combine the throughput advantages of NAKs with the reliability
of Acks. The Reliable Multicast Protocol (RMP) [17] discussed an updated WAN version
of TRP. Although multiple rings are used in a naming hierarchy, the same class of protocol

is used for the actual rings. Therefore, RMP has the same throughput bounds as TRP.
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We base our description of generic ring-based protocols on the LAN protocol TRP and
the WAN protocol RMP. The basic premise is to have only one token site responsible for
AcCKing packets back to the source. The source times out and retransmits packets if it
does not receive an ACK from the token site within a timeout period. The ACK also serves
to timestamp packets, so that all receiver nodes have a global ordering of the packets for
delivery to the application layer. The protocol does not allow receivers to deliver packets
until the token site has multicast its ACK.

Receivers send NaKs to the token site for selective repeat of lost packets that were
originally multicast from the source. The ACK sent back to the source also serves as a
token passing mechanism. If no transmissions from the source are available to piggyback
the token, then a separate unicast message is sent. Since we are interested in the maximum
throughput, we will not consider the latter case in this thesis. The token is not passed to
the next member of the ring of receivers until the new site has correctly received all packets
that the former site has received. Once the token is passed, a site may clear packets from
memory; accordingly, the final deletion of packets from the collective memory of the receiver
set is decided by the token site, and is conditional on passing the token. The source will
only delete packets when an Ack/token is received. Note that both TRP and RMP specify
that retransmissions are sent unicast from the token site. Because out analysis focuses on
maximum attainable throughput of protocol classes, we will assume that the token is passed

exactly once per message.
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3. Protocol Correctness

A protocol is considered correct if it is shown to be both safe and live [18]. For any
reliable multicast protocol to be considered safe, it must deliver all data in order to a higher
layer at the receivers. To be live, the reliable multicast protocol must never have a case
where data cannot be delivered to a higher layer at any of the receivers. To address the
correctness of protocol classes, we assume that nodes never fail during the duration of a
reliable multicast session. Therefore, our analysis of correctness focuses on the ability of
the protocol classes to sustain packet losses or errors. We assume that there exists some
non-zero probability that a packet is received error-free, and that all senders and receivers
have finite memory. Extensions of the generic tree-based protocols that ensure liveness and
safety when nodes can fail are discussed by Levine, Lavo, and Garcia-Luna-Aceves [19].

The proof of correctness for ring-based protocols is given by Chang and Maxemchuk [1].
The proof that sender-initiated unicast protocols are safe and live is available from many
sources (e.g., see Bertsekas and Gallager [18]). The proof does not change significantly
for the sender-initiated class of reliable multicast protocols and is omitted for brevity. The
safety property at each receiver is not violated, because each node can store a counter of the
sequence number of the next packet to be delivered to a higher layer. The liveness property
proof is also essentially the same, because the source waits for ACKs from all members in
the receiver set before sliding the cw forward. Theorems 1 and 2 below demonstrate that
the generic tree-based reliable multicast protocol (TRMP for short) is correct, and that the
class of receiver-initiated reliable multicast protocols that has been proposed is not live.

Theorem 1 TRMP is safe and live.

Proof: Let R be the set of all the nodes that belong to the reliable multicast session,
including a source s. The receivers in the set are organized into a B-ary tree of height h.
The proof proceeds by induction on h.

For the case in which A~ = 1, TRMP reduces to a non-hierarchical sender-initiated

scheme of R = B + 1 nodes, with each of the B receivers practicing a given retransmission
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strategy with the source. Therefore, the proof follows from the correctness proof of unicast
retransmission protocols presented by Bertsekas and Gallager [18].

For A > 1, assume the theorem holds for any ¢ such that (1 <¢ < h). We must prove
the theorem holds for some ¢t = h.

Safety: We must prove that each receiver of a tree of height ¢ delivers all data in order
to a higher layer. Each one keeps a variable storing the sequence number of the packet
to be delivered next. Only the first error-free packet of that sequence received that was
transmitted by the source, or retransmitted by the group leader is delivered, and then the
variable is incremented. This procedure is continued until the session has ended. Therefore,
TRMP is safe.

Liveness: We must prove that each member of a tree of height ¢ never reaches a deadlock.
Consider a subset of the tree that starts at the source and includes all nodes of the tree up
to a height of (f — 1); the leaves of this subtree are also hop nodes in the larger tree, i.e.,
group leaders of the nodes at the bottom of the larger tree. By the inductive hypothesis,
the liveness property is true in this subtree. We must only show that TRMP is live for a
second subset of nodes consisting of leaves of the larger tree and their hop node parents.
Each group in this second subset follows the same protocol, and it suffices to prove that an
arbitrary group is live.

The arbitrary group in the second subset of the tree constitutes a case of sender-
initiated reliable multicast, with the only difference that the original transmission is sent
from the source (external to the group), not the group leader. Since the availability of a
retransmission from a group leader is guaranteed by the inductive hypothesis, each group
is live; therefore, the entire tree is live. QED
Theorem 2 A receiver-initiated reliable protocol is not live.

Proof: The proof is by example focusing on the sender and an arbitrary member of the
receiver set R (where R > 1).

e Sender node, X, has enough memory to store up to M packets.
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e Each packet takes 1 unit of time to reach a receiver node Y. NAKs take a finite

amount of time to reach the sender.

e Let p; denote the it packet, i beginning from zero. pg is sent at start time 0, but it

is lost in the network.
e X sends the next (M — 1) packets to Y successfully.

e Y sends a NAK stating that pg was not received. The NAK is either lost or reaches the

sender after time M when the sender decides to send out packet pas.

e Since X can only store up to M packets, and it has not received any Naks for py by

time M, it must clear pg assuming that it has been received correctly.

e X then receives the NAK for pg at time M + ¢ and becomes deadlocked, unable to

retransmit pg. QED

The above indicates that the receiver-initiated protocols proposed to date require an
infinite memory to work correctly. In practice, this requirement implies that the source must
keep in memory every packet that it sends during the lifetime of a session. This becomes
impractical in long-lived sessions or in sessions in which the likelihood of lost packets or
NAKs is not negligible. Fortunately, the next section shows that tree-based protocols, which
we have shown to work correctly with finite memory, provide all the scaling benefits of

receiver-initiated protocols.



16

4. Maximum Throughput Analysis

4.1 Assumptions

To analyze the maximum throughput that each of the generic reliable multicast protocols
introduced in Chapter 2 can achieve, we use the same model used by Pingali et al. [2, 3],
which focuses on the processing requirements of generic reliable multicast protocols, rather
than the communication bandwidth requirements. Accordingly, the maximum throughput
of a generic protocol is a function of the per-packet processing rate at the sender and
receivers, and the analysis focuses on obtaining the processing times per packet at a given
node.

We assume a single sender, X, multicasting to R identical receivers. The probability of
packet loss is p for any node. Figure 1 summarizes all the notation used in this chapter.
For clarity, we assume a single ACK tree rooted at the source in the analysis of tree-based
protocols. A selective repeat retransmission strategy is assumed in all the protocol classes
since it is the retransmission strategy with the highest throughput [18], and its requirement
of keeping buffers at the receivers is a non-issue given the small of cost memory. Assumptions
specific to each protocol are listed in Chapter 2, and are in the interest of modeling maximum
throughput.

We make two additional assumptions: (1) all loss events at any node in the multicast
of a packet are mutually independent, and (2) no acknowledgments are ever lost. Our
assumptions clearly fail to model real systems accurately but greatly increase the tractability
of the model.

Such multicast routing protocols as CBT, PIM, and DVMRP [8, 9, 20] organize routers
into trees, which means that there is a correlation between packet loss at each receiver. Our
first assumption is equivalent to a scenario in which there is no correlation among packet
losses at receivers and the location of those receivers in the underlying multicast routing
tree of the source. We argue that the results of our analysis constitute a lower bound on

maximum throughput for any protocol class that can take advantage of the relative position
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of receivers in the multicast routing tree for the transmission of ACKs or NAKs. We have
not given any class an advantage with this assumption.

Our second assumption benefits all classes, but especially favors protocols that multicast
acknowledgments. For example, NAK-avoidance is most effective if all receivers are guaran-
teed to receive the first NAK multicast to the receiver set. As the number of nodes involved
in NAK-avoidance increases, the task of successful delivery of a NAK to all receivers becomes
less probable. Both RINA and tree-NAPP protocols are favored by the assumption, but
RINA protocols much more so, because the probability of delivering NAKs successfully to
all receivers is exaggerated. Tree-NAPP protocols benefit from the assumption, but the
number of receivers involved in the exchange of NAKs is bounded by the size of the local
groups, and therefore the advantages of assuming perfect NAK transmissions are limited.
Even with this handicap, our analysis shows that tree-NAPP protocols are better than
RINA protocols.

Table 1 summarizes the bounds on maximum throughput for all the known classes of
reliable multicast protocols. Our results clearly show that tree-NAPP protocols constitute

the most scalable alternative.

4.2 Sender- and Receiver-Initiated Protocols

Following the notation introduced by Pingali et al. [2, 3], we place a superscript A on
any variable related to the sender-initiated protocol, and N1 and N2 on variables related
to the receiver-initiated and RINA protocols, respectively. The maximum throughput of

the protocols for a constant stream of packets to R receivers is [2]:

1A € 0O (R(l + ]ilf};’)) , (4.1)
/AN ¢ O <1 + %) : (4.2)
1/AN? € 0O (1 + Tif) . (4.3)

Even as the probability of packet loss goes to zero, the throughput of the sender-initiated

protocol is inversely dependent on R, the size of the receiver set, because an ACK must be



18

Xy

Xp

Xa, Xn, Xp
X, Vs

Yy

Yy
Ya,Yn, Vg

p

Xw, yw

HT gH2

TR

Xy, Yy

Branching factor of a tree, the group size.

Size of the receiver set.

Time to feed in new packet from the higher protocol layer.

Time to process the time to process the transmission of a packet.

Times to process transmission of a ACK, NAK, or HACK.

Time to process a timeout at a sender or receiver node respectively.
Time to process a newly received packet.

Time to deliver a correctly received packet to a higher layer.

Times to process and transmit an ACK , NAK , or HACK respectively.
Probability of loss at a receiver; losses at different receivers are assumed
to be independent events.

Number of HACKs sent by receiver r per packet using a tree-based protocol.
Number of ACKs sent by a receiver r per packet using a unicast protocol.
Total number of HACKs received from all receivers per packet.

Number of transmissions necessary for receiver r to successfully receive

a packet.

Number of transmissions for all receivers to receive the packet correctly;
M = max, {M,}

Processing time per packet at the sender and receiver respectively

in protocol w € {A,N1,N2, H1,H2, R}.

Processing time per packet at a hop node in tree-based and tree-NAPP
protocols, respectively.

Processing time per packet at the token-site ring-based protocols.
Throughput for protocol w € {A, N1,N2, H1, H2, R} where z is one of
the source s, receiver (leaf) r, hop-node h, or token-site ¢. No subscript
denotes overall system throughput.

Times to process the reception and transmission, respectively, of a

periodic HACK.

Figure 1: Notation.
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protocol processor requirements Zc)o?zit(clmt p—0
Sender-initiated [2] | O (R(l + %)) O(RInR) | O(R)
Receiver-initiated O (1 plnR) O(ln R o1
NAK-avoidance [2] T (In R) (1)
Ring-based (R—1)p

(unicast retrans.) 0 (1 T ) O(R) oQ)
Tree-based O(B(1 —p)+pBlnB) 0(1) o)
Tree-NAPP O(1+ (el priom))) | o(1) o(1)

Table 1: Analytical bounds.

sent by every receiver to the source once a transmission is correctly received. In contrast,
as p goes to zero, the throughput of receiver-initiated protocols becomes independent of the
number of receivers. Notice, however, that the throughput of a receiver-initiated protocol
is inversely dependent with R, the number of receivers, or with In R, when the probability

of error is not negligible.

4.3 Tree-Based Protocols

We denote this class of protocols simply by H1, and use that superscript in all variables
related to the protocol class. In the following, we derive and bound the expected cost at each
type of node and then consider the overall system throughput. To make use of symmetry,
we assume, without loss of generality that there are enough receivers to form a full tree at

each level.

4.3.1 Source node

To make use of symmetry, we will assume, without loss of generality that there are
enough receivers to form a full tree at each level. We consider first X!, the processing
costs required by the source to successfully multicast an arbitrarily chosen packet to all

receivers using the H1 protocol. The processing requirement for an arbitrary packet can be
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expressed as a sum of costs:

XH' = (initial transmission) + (retransmissions) + (receiving ACKs )
M H1
XU = X+ X,(1) 4+ 3 (Xe(m) + Xp(m)) + > X4 (d), (4.4)
m=2 =1

where Xy is the time to get a packet from a higher layer, X,(m) is the time taken on
attempt m at successful transmission of the packet, X;(m) is the time to process a timeout
interrupt for transmission attempt m, X} (7) is the time to process HACK %, M is the number
of transmissions that the source will have to make for this packet, and L' is the number

of HACKs received using the H1 protocol. Taking expectations, we have
E[XT1] = E[X/] + E[M] E[X,] + (E[M] - 1) E[X] + E[L"'] E[X},]. (4.5)

What we have derived so far is extremely similar to Equations (1) and (2) in the analysis
by Pingali et al. [2]. In fact, we can use all of that analysis, with the understanding that
B is the size of the receiver subset from which the source collects HACKs. Therefore, the

expected number of HACKs received at the sender is
E[L7'] = E[M](B)(1 - p). (4.6)

Substituting Equation 4.6 into Equation 4.5, we can rewrite the expected cost at the source

node as
EIX™] = BLX,] + E[M] ELX,] + (E[M] — 1) E[X,] + EIM]B(1 — p) E[X,].
(4.7)

Because in H1 the number of receivers R = B, the expected number of transmissions per

packet is [10, 2]

B . 1
E[M] = (=1)*——. (4.8)
ZZ:; i (1-p)
Pingali et al. [3, 2] provided a bound of E[M] using the following four equations.
Hp Hp
<EM]<L1 4.
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where Hg = -2 1/i, the harmonic numbers. From the known inequality

p
In(14p) > L
n( p)_Hp

it follows that

-1
—lnp<p—.
p

Using this and taking into account that Hg € O(In B), and by assuming all operations (e.g.

Xy and X,) are of constant cost, and given that R = B in H, it is shown that

E[M] € O (1 + o fp In B) . (4.10)

Using Equation 4.10, we can bound Equation 4.7 as follows

EXA e O <B(1 n ’ilff)u - p))
€ O(B(1-p)+ Bph B). (4.11)

It then follows that when p is a constant E[X"'] € O(B1n B).

4.3.2 Leaf nodes

Let YA denote the requirement on nodes that do not have to forward packets (leaves).
Notice that leaf nodes in the H1 protocol will process fewer retransmissions and thus send
fewer acknowledgments than receivers in the A protocol. We can again use an analysis

similar to the one by Pingali et al. [2] for receivers using a sender-initiated protocol.

YHL = (receiving transmissions) 4 (sending HACKs back)
A

VI =Y (V0 + D) ) + Yy, (4.12)
=1

where Y),(7) is the time it takes to process (re)transmission ¢, Y}, (7) is the time it takes to
send HACK ¢, Y is the time to deliver a packet to a higher layer, and L];LH is the number
of HACKs generated by this node h (i.e., the number of transmissions correctly received).
Since each receiver is sent M transmissions with probability p that a packet will be lost, we

obtain

B[] = E[M](1 - p). (1.13)
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Taking expectations of Equation 4.12 and substituting Equation 4.13 we have

EY™] = BIL(EN,] + E[Y:]) + E[Y/]

= E[M](1 - p) (E[Y,] + E[Y4]) + E[Y/]. (4.14)
Again, noting the bound of E[M] given in Equation 4.10,
EYf1 e O(1-p+phB). (4.15)

When p is treated as a constant E[YF1] € O(In B).

4.3.3 Hop nodes

To evaluate the processing requirement at a hop node, h, we note that a node caught
between the source and a node with no children has a two jobs: to receive and to retransmit
packets. Because it is convenient, and because a hop node is both a sender and receiver,

we will express the costs in terms of X and Y. Our sum of costs is

HM' = (receiving transmissions) + (sending HACKs back)

+ (collecting HACKs from children) + (retransmissions to children)

i [H1 M
B =Y (V00 Y+ X+ Y (X + X)) (416)
1=1 k=1 m=2

Just as in the case for the source node, LH' is the expected number of HACKs received from

node h’s children for this packet, and L’;H is the number of HACKs generated by node h.

E[H™] = EIL(EY,]+ E[Y]) + E[Ys] + (E[M] - 1)(E[X,] + E[X4])

+ E[L7Y E[X,]. (4.17)
We can substitute Equations 4.6 and 4.13 into Equation 4.17 to obtain

E[H™] = E[M](1 - p)(E[Y,] + E[YA]) + EIYy] + (E[M] - 1) (E[X,] + E[X/))

+ BE[M](1 - p) E[X}]. (4.18)



23

The first two terms are equivalent to the processing requirements of a leaf node. The last

two are almost the cost for a source node. Substituting and subtracting the difference yields
E[HIY = E[YA!] + B[XT!] - B[X(] - E[X,)]. (4.19)

In other words, the cost on a hop node is the same as a source and a leaf, without the
cost of receiving the data from higher layers and one less transmission (the original one).

Substituting Equations 4.11 and 4.15 into 4.19 we have

E[H] € O(1-p+plnB) UO(B(1—p)+ Bpln B)

€ O(B(1-p)+ BphB). (4.20)
When p is a constant E[H”'] € O(BIn B), which is the dominant term in the throughput
analysis of the overall system.
4.3.4 Overall system analysis

Let the throughput at the sender Af! be 1/ E[X"!], at the hop nodes Af! be 1/ E[HT!],

at the leaf nodes A" be 1/ E[Y#!]. The throughput of the overall system is
AFL = min{ AT ATTL ATTLY (4.21)
From Equations 4.11, 4.15, and 4.20 it follows that
1/AMY ¢ O(B(1 - p) + Bpln B). (4.22)
If p is a constant and if p — 0, we obtain

1/M1 c O(BInB) =0(1) ; p constant, (4.23)

/ML cOB)=0(1) ; p—0. (4.24)

Therefore, the maximum throughput of this protocol, as well as the throughput with
non-negligible packet loss, is independent of the number of receivers. This is the only class
of reliable multicast protocols that exhibits such degree of scalability with respect to the

number of receivers.
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4.4 Tree-based Protocols with Local NAKk-avoidance and Periodic Polling

To bound the overall system throughput in the generic Tree-NAPP protocol, we repeat
the method used for the tree-based class; we first derive and bound the expected cost at
the source, hop, and leaf nodes. As we did for the case of tree-based protocols, we assume
that there are enough receivers to form a full tree at each level. We place a superscript H?2

on any variables relating to the generic Tree-NAPP protocol.

4.4.1 Source node

We consider first XH2 the processing costs required by the source to successfully
multicast an arbitrarily chosen packet to all receivers using the H2 protocol. The processing

requirement for an arbitrary packet can be expressed as a sum of costs:

XH2 = (initial transmission) + (retransmissions) + (receiving NAKs)
+ (receiving periodic HACKs )

M M
XT = X+ 3 X,()+ D Xa(m) + BX,, (4:25)

i=1 m=2
where Xy is the time to get a packet from a higher layer, X,(¢) is the time for (re)trans-
mission attempt 7, X, (m) is the time for receiving NAK m from the receiver set, Xy is
the amortized time to process the periodic HACK associated with the current congestion
window, and M is the number of transmissions attempts the source will have to make for

this packet. Taking expectations, we have
BIX2 = BIX]+EIMIELX,]+ (BIM] - 1) EX.] 4 BEIX,.  (4.26)

Using Eq. 4.10, the bound of E[M], we can bound Eq. 4.26 as follows

P
1—p

P
1 In B). 4.2
eO(+1_pn) (4.27)

EX7? ¢ o141+

In B)

It then follows that, when p is a constant, E[X7?] € O(1).
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4.4.2 Leaf nodes

Let Y2 denote the processing requirement on nodes that do not have to forward packets

(leaves). The sum of cost can be expressed as

YH2 = (receiving transmissions) + (sending periodic HACKs) 4 (sending NAKs)

+ (receiving NAKs)
M M

vz = 2(1 —p)Y, (i) + Yy +Y¢+Z:<Y”l§j) +(B— 1)X%(j)>
+ Prob{M, > 2}]\%1)@(7:). (4.28)
k=2

Let Y, (i) be the time it takes to process the (re)transmission ¢, Y, (j) be the time it takes
to send NAK j, X,,(j) be the time it takes to receiver NAK j (from another receiver), Y;(k)
be the time to set timer k, Y be the time to deliver a packet to a higher layer, and Yy be
the amortized cost of sending a periodic HACK for a group of packets of which this packet

is a member. Taking expectations of Eq. 4.28,

B = EIMIO - p) DY)+ B+ R+ e - (PR - )
+ Prob{M, >2}(E[M,|M, >2] — 2) E[Y,]. (4.29)
It follows from the distribution of M, that [2]
EMM, > 2] = (3-20)/(1-p). (4:30)

Therefore, noting Eq. 4.30 and that Prob{M, > 2} = p? we derive from Eq. 4.29 the

expected cost as

ElY, E[X,
BV = RIMIO - ) IV + BV 4 R+ B - 1 (P52 - )

32

+ p? (—p - 2) E[Y]. (4.31)
L—p

Again, using the bound of E[M] given in Eq. 4.10, we can bound Eq. 4.31 by
1- InB+p2(1—4
E[YH?Y] ¢ O<1+( p+pn1_;p( p))). (4.32)

When p is treated as a constant E[Y#2] € O(1).
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4.4.3 Hop nodes

The sum of costs for hop nodes, which has jobs of both sender and receiver is

HH? = (receiving transmissions) + (sending periodic HACKs )
+ (receiving periodic HACKs ) + (receiving NAKs ) + (sending NAKs )
+ (retransmissions to children)

M M . ,
T = (1—p)ZYp(z‘)+Y¢+BX¢+Yf+Z<Yan«7)+ (B - 1)Xn(1)>

B

My—1 M -
+ Prob{M, > 2} > Yi(k) + > (Xn(m)+ X,(m)). (4.33)

k=2 m=2
Taking expectations and substituting Eq. 4.30, we obtain
E[H™] = (1-p)E[M]E[Y,] + E[Yy] + BE[X] + E[Y/]
E[Y,] E) (3222 )
E[M] -1 B—-1)— — — 2| K[V,
B[ - 1) (S (8- )25 ) 4 (TE - 2) BIY)

+ (E[M] = D) (E[X,] + E[X,]). (4.34)

Similar to hop nodes in the H1 protocol, the cost on at hop node is the same as a source and
a leaf, without the cost of receiving the data from higher layers and one less transmission.
Substituting Eq. 4.26 and Eq. 4.31 into Eq. 4.34 and subtracting the difference the expected

cost can be expressed as

E[HY = EB[YP?+E[XA% - E[X/] - B[X,)]. (4.35)
Therefore Eq. 4.34 can be bounded by

E[H™] e O(E[Y™]) u OEXTY)

1-— In B 2(1 -4
€ o<1+( p+pn1_;p( p)))

(4.36)

When p is a constant E[H?] € O(1). Therefore, all nodes in the Tree-NAPP protocol have

a constant amount of work to do with regard to the number of receivers.
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4.4.4 Overall system analysis

The overall system throughput for the H2 protocol is the minimum throughput attain-

able at each type of node in the tree:
A2 = min{ A2 A2 A2} (4.37)

From Equations 4.27, 4.32, and 4.36, it follows that

1—p—}—plnB+p2(1—4p)))

H?2
1/AT2 € 01+ ( T

(4.38)
Accordingly, if either p is constant or p — 0, we obtain from Eq. 4.38
/A" c0(1)

Therefore, the maximum throughput of the Tree-NAPP protocol, as well as the through-
put with non-negligible packet loss, is independent of the number of receivers. In Chapter 5
the exact equations of throughput of all classes are compared, and it is shown that Tree-

NAPP protocols attain the highest throughput, according to our model.

4.5 Ring-Based Protocols

In this section we analyze the throughput of ring-based protocols, which we denote by
a superscript R, using the same assumptions as in sections 4.3 and 4.4. Because we are
assuming a constant stream of packets, we will ignore the overhead that occurs when there

are no ACKs on which to piggyback token-passing messages.

4.5.1 Source

Source nodes practice a special form of unicast with a roaming token site. The sum of

costs incurred is

X® = (initial transmission) + (processing ACKs) + (retransmissions)

Ly M,
X7 = XX X0+ Y (Xt(m)—I-Xp(m)), (4.39)
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where M, is the number of transmissions required for the packet to be received by the token
site, and has a mean of E[M,] = 1/(1 —p); and let LY be the number of Acks from a receiver
r (in this case the token site) sent unicast, i.e., the number of packets correctly received

at r. This number is always 1, accordingly:
LV = E[M,](1-p) = 1. (4.40)
Taking expectations of Eq. 4.39, we obtain

ELX 7] E[X 7]+ E[M,] E[X,] + (E[M,] - 1) E[X;] + E[L]] E[X,]

_ EX+ ﬁ E[X,] + 1% E[X] + E[X.]. (4.41)

If we again assume constant costs for all operations, it can be shown that

Elxfleo (ﬁ) , (4.42)

which, when p is a constant, is O(1) with regard to the size of the receiver set.

4.5.2 Token site

The current token site has the following costs: (Note both TRP and RMP specify that

retransmissions are sent unicast to other B — 1 receivers.)

TR = (receiving transmission) + (multicasting ACK/token )

+ (processing NAKs ) + (unicasting retransmissions)

Ly L* M,
™ = Yi+4 Z <Yp(i)+Ya(i)) + ZXn(j) + (R — 1)Prob{M, >1} Y X,(m),(4.43)

m=1
where L is the number of NAKs received at the token site when using a ring protocol. To
derive L, consider M,, the number of transmissions necessary for receiver r to successfully
receive a packet. M, has an expected value of 1/(1 — p), and the last transmission is not
NAKed. Because there are (R — 1) other receivers sending NAKs to the token site, we obtain

(B-Dp

BILF) = (R = 1)(EM] - 1) = 5

(4.44)
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Therefore, the mean processing time at the token site is

BT E[Yf] + E[Y;] + E[Y,] + E[L7] E[X,] + (R — 1)p E[M,] E[X,)]
M <E[Xn] 4 E[Xp]>. (4.45)

= EM/]+EN]+EY.]+
The expected cost at the token site can be bounded by

E[1TF e 0 <1 + (Rl%;)p) , (4.46)

with regard to the number of receivers. When p is a constant, E[T¥] € O(R).

4.5.3 Recelvers

Receivers practice a receiver-initiated protocol with the current token site. We assume
there is only one packet for the ACK, token, and timestamp multicast from the token site

per data packet. The cost associated with an arbitrary packet are therefore

Y® = (receiving ACK/token/timestamp) + (receiving first transmission)

+ (sending NAKs ) + (receiving retransmissions)

Ly
YR = Y, +Prob{M, = 1}Y,(1) + Yy + Prob{M, > 1} >_ Y, (i)
=1
M, M
+ Prob{M, > 1} Z Y, (m) + Prob{M, > 2} Z Yi(n). (4.47)
m=2 n=3

The above equation is complicated, and each term needs to be explained. The first term
is the cost of receiving the Ack/token/timestamp packet from the token site; the second
is the cost of receiving the first transmission sent from the sender, assuming it is received
error free; the third is the cost of delivering an error-free transmission to a higher layer; the
fourth is the cost of receiving the retransmissions from the token site, assuming that the
first failed; and the last two terms consider that a NAK is sent only if the first transmission
attempt fails and that an interrupt occurs only if a NAK was sent. Taking expectations, we

obtain

ElYr] = B+ (1-p) E[Y,]+E[Ys] +pE[L]E[Y,]

+ p(E[M,| M, > 1] — 1) E[Y,] + p*(E[M,|M, > 2] — 2) E[Y;].  (4.48)
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As shown previously [2]

9 _
E[M,|M, >1] = —2Z (4.49)
L—p
and as stated in the previous section
3-2
E[M,|M, > 2] = 2— 2 (4.50)
L—p
Substituting Equations 4.40, 4.49, and 4.50 into Equation 4.48 we have
BIYF] = B+ (1= p) B+ B+ p B+ 2 (B + 9 BIYD). (451
Assuming all operations have constant costs, it can be shown that
1 2
EYReo ( 1+p ) : (4.52)
—-D

with regard to the size of the receiver set. If we consider p as a constant, then E[Y ] € O(1).

4.5.4 Overall system analysis

The overall system throughput of R, the generic token ring protocol, is equal to the

minimum attainable throughput at each of its parts:
AR = min{ AR AR ATY (4.53)

From Equations 4.42, 4.46 and 4.52 if follows that if p is a constant and for p — 0, we

obtain
-1
1/AF e O (1 + (Rli)p) ;  p constant, (4.54)
-Pp
1/Afe0() ; p—o. (4.55)

When p — 0, the maximum throughput of this class of protocols is O(1) and not dependent

of the number of receivers.
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5. Numerical Results

To compare the relative performance of the various classes of protocols, all mean processing
times are set equal to 1, except for the periodic costs X4 and Yy which are set to 0.1.
Figure 2 compares the relative throughputs of the protocols A, N1, N2, H1, H2, and R
as defined in Chapter 2. The graph represents the inverse of Equations 4.18, 4.34, and
4.45, respectively, which are the throughputs for the tree-based, tree-NAPP, and ring-based
protocols, as well as the inverse of the throughput equations derived previously [2] for
sender- and receiver-initiated protocols. The top, middle and bottom graphs correspond to
increasing probabilities of packet loss, 1%, 10%, and 25%), respectively.

The performance of NaAK-avoidance protocols, especially tree-NAPP protocols, is clearly
superior. However, our assumptions place these two sub-classes at an advantage over their
base classes. Iirst, we assume that no acknowledgments are lost or are received in error.
The effectiveness of NAK-avoidance is dependent on the probability of NAKs reaching all
receivers, and thus, without our assumption, the effectiveness of NAK-avoidance decreases
as the number of receivers involved increases. Accordingly, tree-NAPP protocols have an
advantage that is limited by the branching factor, and RINA protocols have an advantage
that increases with the size of the entire receiver set.

Second, we assume that the timers used for NAK-avoidance are set perfectly. In reality
the messages used to set timers would be subject to end-to-end delays that exhibit no
regularity and can become arbitrarily large.

We conjecture that the relative performance of NAK-avoidance subclasses would actually
lie closer to their respective base classes, depending on the effectiveness of the NAK-avoidance
scheme; in other words, the curves shown are upper bounds. Our results show that when
considering only the base classes (since not one has an advantage over another) the tree-
based class performs better than all the other classes. When considering only the sub-classes
that use NAK-avoidance, tree-NAPP protocols perform better than RINA protocols, even

though our model provides an unfair advantage to RINA protocols.
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Figure 2: The throughput graph from the exact equations for each protocol. The
probability of packet loss is 1%, 10%, and 25% respectively. The branching factor

for trees is set at 10.

It is the hierarchical structure organization of the receiver set in tree-based protocols
that guarantees scalability and improves performance over other protocols. Using NAK-
avoidance on a small scale increases performance further. In addition, if NAK-avoidance
failed for a tree-NAPP protocol, the performance would still be independent of the size of
the receiver set. RINA protocols do not have this property. Failure of the NAK-avoidance
for RINA protocols would results in unscalable performance like that of a receiver-initiated

protocol, which degrades quickly with increasing packet loss.
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Figure 3: Number of supportable receivers for each protocol. The probability of
packet loss is 1%, 10%, and 25% respectively. The branching factor for trees is set
at 10.

Any increase in processor speed, or a smaller branching factor would also increase
throughput for all tree-based protocols. However, for the same number of receivers, a
smaller branching factor implies a larger number of tree-hops some retransmissions must
traverse to receivers expecting them further down the tree. For example, if a packet is lost
immediately at the source, the retransmission is multicast only to its children and all other
nodes in the tree must wait until the retransmission trickles down the tree-structure. This

poses a latency problem that can be addressed by taking advantage of the dependencies in
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the underlying multicast routing tree. Retransmissions could be multicast only toward all
receivers attached to routers on the subtree of the router attached to the receiver which
has requested the missing data. However, to date there is no proposed scheme which
accomplishes this task. The number of tree hops from the receiver to the source is also
a factor in how quickly the source can release data from memory in the presence of node
failures, as discussed by Levine, Lavo, and Garcia-Luna-Aceves [19].

Figure 3 shows the number of supportable receivers by each of the different classes,
relative to processor speed requirements. This number is obtained by normalizing all classes
to a baseline processor, as described by Pingali et al. [2, 3]. The baseline uses protocol A
and can support exactly one receiver; if u“[R],w € {A, N1, N2,H1, H2, R} is the speed of
the processor that can support at most R receivers under protocol w, we set u4[1] = 1. The

baseline cost is equal to [2, 3]

1 _ _
pxd| =L 2P 3P (5.1)
R=1 M [1]1-p I-p

Using Equations 5.1, 4.17, 4.34, and 4.45 we can derive the following p’s for tree-based,

tree-NAPP, and ring-based protocols, respectively:

iR = E[)li, 7 L

= e (M0 = P)) + 1+ (M) = 1)) + BEM]( ~p)

= E[;,A](—1+E[M](4—I-B—(2—|-B)p)), (5.2)
pR) = ﬁE[HHQ]

- E&A]((‘l—p)E[M]—1.9+0.1B+p2<%—2), (5.3)
R 1 R
prlR] = XA B[TH]

- = (7=

1
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The number of supportable receivers derived for sender- and receiver-initiated protocols are

shown to be [2, 3],

1

ptR] = @E[M](Q—}—R(l—p)),

pNUR) = ﬁ(HE[MHRp/(l—p)),
9 _ 1

pNR] = m@ E[M]).

Because the exact value of E[M] is difficult to compute for large values of R, we use the
approximation [2, 3],

(Hzs — HR)

EM]~a+ )

(5.5)

where a is the value of E[M] for R = 35 and Hj, is the harmonic series. When evaluating
T R] and pf?[R], an exact value for E[M] is used because the number of receivers is
always R = B = 10.

From Figure 3, it is clear that only the tree-based classes can support any number of
receivers for the same processor speed bound at each node. It is also clear that, in terms of
performance, tree-NAPP protocols are superior to other classes.

Because of the unicast nature of retransmissions in ring-based protocols, these protocols
approach sender-initiated protocols; this indicates that allowing only multicast retransmis-

sions would improve performance greatly.
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6. Conclusions

We have compared and analyzed the four known classes of reliable multicast proto-
cols. The results are summarized in Table 1. It is already known that sender-initiated
protocols are not scalable at all since the source must account for every receiver listening.
Receiver-initiated protocols are more scalable, especially when NAK-suppression schemes
are used to avoid overloading the source with retransmission requests. However, because of
the unbounded-memory requirement, this protocol class can only be used efficiently with
application-layer support, and only for limited applications. Ring-based protocols were de-
signed for atomic and total ordering of packets. TRP and RMP limit their throughput
by requiring retransmissions to be unicast. It would be possible to reduce the cost bound
to O(In R), assuming p to be a constant, if the NAK-avoidance techniques presented by
Ramakrishnan and Jain [10] were used.

Our analysis shows that trees are the answer to the scalability problem for reliable
multicasting. Only tree-based and tree-NAPP classes have a throughput that is constant
with respect to the number of receivers even when the probability of packet loss is not
negligible. Furthermore, our model predicts tree-NAPP protocols as the best method for
supporting reliable multicast.

Of course, our model constitutes only a crude approximation of the actual behavior of
reliable multicast protocols. In the Internet, an ACK or a NAK is simply another packet, and
the probability of an ACK or NAK being lost or received in error is much the same as the
error probability of a data packet. This assumption gives protocols that use NAK-avoidance
an advantage over over other classes. Therefore, it is more reasonable to compare them sep-
arately: our results show that tree-based protocols without NAK-avoidance perform better
than other classes that do not use NAK-avoidance, and that tree-NAPP protocols perform
better than RINA protocols even though RINA protocols have an artificial advantaged over
every other class.

We conjecture that, once the effect of ACK or NAK failure is accounted for, the same
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relative performance of protocols that do not use NAK-avoidance will be seen. Furthermore,
we believe the true performance of tree-NAPP and RINA protocols will lie closer to their
respective base classes, depending on the effectiveness of the NaK-avoidance scheme; in
other words, the curves shown for NAK-avoidance protocols are upper bounds.

The fact that packet failures are correlated along a multicast routing trees setup by
CBT or PIM means that our model’s assumption of independent packet failures leads to
lower bounds on the maximum throughput, because reliable multicast protocols can take
advantage of the structure of the underlying multicast routing tree. Our analysis provides
no advantage to any class however, and we believe the relative performances would not
change if we did not make this assumption.

Because tree-based protocols delegate responsibility for retransmission to receivers and
because they employ techniques applicable to either sender- or receiver-initiated protocols
within local groups (i.e., a node and its children in the tree) of the Ack tree only, any
mechanism that can be used in a receiver-initiated protocol can be adopted in a tree-based
protocol, with the added benefit that the throughput and number of supportable receivers
is completely independent of the size of the receiver set, regardless of the likelihood with
which packets are received correctly at the receivers. Based on these results, our future
work focuses on developing new tree-based protocols for scalable reliable multicasting in

the Internet [19].
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